Split Bregman method for large scale fused Lasso

نویسندگان

  • Gui-Bo Ye
  • Xiaohui Xie
چکیده

Abstract: Ordering of regression or classification coefficients occurs in many real-world applications. Fused Lasso exploits this ordering by explicitly regularizing the differences between neighboring coefficients through an l1 norm regularizer. However, due to nonseparability and nonsmoothness of the regularization term, solving the fused Lasso problem is computationally demanding. Existing solvers can only deal with problems of small or medium size, or a special case of the fused Lasso problem in which the predictor matrix is identity matrix. In this paper, we propose an iterative algorithm based on split Bregman method to solve a class of large-scale fused Lasso problems, including a generalized fused Lasso and a fused Lasso support vector classifier. We derive our algorithm using augmented Lagrangian method and prove its convergence properties. The performance of our method is tested on both artificial data and real-world applications including proteomic data from mass spectrometry and genomic data from array CGH. We demonstrate that our method is many times faster than the existing solvers, and show that it is especially efficient for large p, small n problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Split Bregman Method for Sparse Inverse Covariance Estimation with Matrix Iteration Acceleration

We consider the problem of estimating the inverse covariance matrix by maximizing the likelihood function with a penalty added to encourage the sparsity of the resulting matrix. We propose a new approach based on the split Bregman method to solve the regularized maximum likelihood estimation problem. We show that our method is significantly faster than the widely used graphical lasso method, wh...

متن کامل

Split LBI: An Iterative Regularization Path with Structural Sparsity

An iterative regularization path with structural sparsity is proposed in this paper based on variable splitting and the Linearized Bregman Iteration, hence called Split LBI. Despite its simplicity, Split LBI outperforms the popular generalized Lasso in both theory and experiments. A theory of path consistency is presented that equipped with a proper early stopping, Split LBI may achieve model s...

متن کامل

On efficiently solving the subproblems of a level-set method for fused lasso problems

In applying the level-set method developed in [Van den Berg and Friedlander, SIAM J. on Scientific Computing, 31 (2008), pp. 890–912 and SIAM J. on Optimization, 21 (2011), pp. 1201– 1229] to solve the fused lasso problems, one needs to solve a sequence of regularized least squares subproblems. In order to make the level-set method practical, we develop a highly efficient inexact semismooth New...

متن کامل

Quantitative Photoacoustic Tomography

This chapter focuses on quantitative photoacoustic tomography to recover optical maps from the deposited optical energy. After a brief overview of models, theories and algorithms, we provide an algorithm for large-scale 3D reconstructions, so-called gradient-based bound-constrained split Bregman method (GBSB).

متن کامل

Bregmanized Domain Decomposition for Image Restoration

Computational problems of large-scale appearing in biomedical imaging, astronomy, art restoration, and data analysis are gaining recently a lot of attention due to better hardware, higher dimensionality of images and data sets, more parameters to be measured, and an increasing number of data acquired. In the last couple of years non-smooth minimization problems such as total variation minimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2011